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1.0 I ~ R O ~ U C T I O N  
The Royal Aircraft  Establishment, Bedford (RAE) 
has been actively involved i n  research on both 
Wind Shear and Vortex Wakes, for  many years 
( R E F  1,2,3 & 4). The years 1982 and 1983 will 
see the successful completion of many of the 
recent programmes which have already led to  
major steps forward i n  our understanding of both 
wind shear and vortex wake and the i r  imoact on 
a i rc raf t .  T h i s  increased understanding is  re- 
f lected in the development of systems and advice 
to  help pi lots ,  and i n  providing rational scien- 
t i f i c  methods to  a s s i s t  i n  advising Certif ica- 
tion Authorities and a l l  those interested in 
improving f l i g h t  safety. 

Wind Shear and Vortex Wakes are related in that  
they both are invis ible  enemies of a i r c ra f t  i n  
the form of large disturbances i n  the atmosphere 
and both cause major accidents. They are  con- 
sidered separately in this report ,  as i s  the 
similar problem of building wakes a t  a i rports .  

During the l a t e  1970's a considerable volume of 
research on wind shear was in i t ia ted  by the 
American FAA following the Boston, New York and 
Denver accidents to  c iv i l  a i r l i ne r s ,  Similar 
work was also s tar ted in the UK. This research 
resulted in useful advice to  pi lots  about wind 
shear; better attempts by the meteorologists a t  
forecasting wind shear conditions; and some 
useful ideas for  wind shear measurement and 
warning systems. By 1980, there were s t i l l  
three major research tasks outstanding: 

a. 

b. 

C.  

Worldwide measurements to  give re l iab le  
estimates of probability and de ta i l s  of 
the forms of large w i n d  shears. 

Developments of real-time wind shear 
measuring systems f o r  ground or airborne 
use. 

Establishing re1 ationshi ps between measured 
wind shear and the potential hazard to  an 
a i r c ra f t ,  or class of a i rc raf t .  

W i t h o u t  resul ts  from these three areas, i t  i s  
d i f f i cu l t  for Certif ication Authorities t o  
suggest workable requirements, or  for  avionics 
companies to  provide adequate display informa- 
tion fo r  pilots.  The RAE have established 
programmes i n  a l l  three areas i n  collaboration 
with UK industry and the United Kingdom CAA. 
The work and some highlights from the resul ts  
are presented i n  this note. 
that  progress towards ins ta l l ing  sui table  eauip- 
ment i n  a i r c ra f t  and a t  a i rports  will  be very 
slow i f  Certif ication Authorities do not make 
any requirements. Until th i s  year, these author- 
i t i e s  could claim with considerable jus t i f ica t ion  
that:  

I t  i s  wor th  noting 
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a. Suitable proven ecruipments for  wind shear 
measurement d i d  not exis t ;  

b. Improved training seemed to  reduce accidents 
from wind shear. 

These arguments , together w i t h  the pol i t ical  and 
economic climate, effect ively s ta l led  any possi- 
b i l i t y  of producing requirements, Although the 
pol i t ical  and economic climate has not changed, 
the s i tuat ion on both (a )  and (b)  i s  now very 
different .  Several systems fo r  measuring and 
displaying wind shear information have now been 
tested i n  f l i gh t ,  particularly i n  the  UK. Also, 
the t ragic  New Orleans accident and the Air 
India B-747 accident a t  Bombay, have dramatically 
highlighted the continuing menace of wind shear, 

Turning t o  Vortex Makes: the RAE withdrew from 
a l l  Civil Vortex Wake experiments i n  1977, a l -  
though some reports continued t o  be published as 
interesting events arose, such as incidents i n  
cruising f l i gh t  ( R E F  4 ) ,  or as further analysis 
of existing data was completed ( R E F  5 ti 6).  
However, i n  1981, an RAF F4 (Phantom) a i r c ra f t  
crashed in a formation landing and early in 1982, 
an RAF Hawk Trainer also crashed. The RAE ad- 
vised, and the Boards of Enquiry agreed, tha t  
Vortex Wake encounters were very l ikely causes 
of both accidents. Several f l i g h t  measurements 
of vortices were made to  verify this, using the 
unique f a s t  response flow measurement probe on 
the RAE HS-125 research a i rc raf t .  From these 
measurement and past experiments i n  the USA and 
U K ,  the RAE have developed a re la t ively simple 
and rational method of assessing potential vortex 
hazard, and identifying the relat ive suscepti- 
b i l i t i e s  of various mil i tary and c iv i l  a i rc raf t .  
The main lessons from this work are described i n  
this note and should provide both c iv i l  and 
mili tary authori t ies  w i t h  a means of assessing 
separation requirements fo r  existing and proposed 
new a i r c ra f t ,  such as the proposed B-747 develop- 
ment and, a t  the other extreme, the new Ultra 
L i g h t  a i rc raf t .  

The t h i r d  tdpic addressed i s  Building Wake Tur- 
bulence. 
(Heathrow), constraints on space have led to  the 
construction o f  large a i r c ra f t  maintenance build- 
ings near the runways. A t  Heathrow, the build- 
ings  of the Brit ish Airways Engineering Base are  
South of the l a s t  kilometre of the approach t o  
Runway 28R. Pi lots  are  warned to  expect large 
wind changes on this approach in S!nl winds of 
15 k t  or  more. 
buildings are  i n  hand for  Heathrow and other 
a i rports ,  b u t  we have as yet  no means of assessing 
the i r  potential hazard i n  any objective way. A 
j o in t  programme between the RAE and Bristol Uni- 
versity is addressing this problem and is des- 
cribed i n  t h i s  note. 

A t  some airports ,  such as London 

Plans t o  construct more large 
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2.0 WIND SHEAR PROGRAMME 
This section describes the work on: 

a. Wind shear measurements 

bo Hazard level determination 

c. Wind shear detection and display systems. 

2.1 Wind Shear Measurements 

2.1,l Airline Flight Data Recordings 

All major a i r l ines  in the U K ,  and a i r l i nes  i n  
several other countries, b u t  not including the 
USA, use continuous f l i gh t  data recording to  
monitor system health (especially engines) and 
provide information on operating events t o  
improve operating techniques and f l i g h t  safety. 
These records contain a wide range of f l i g h t  
si tuation parameters and in 1978, the RAE 
approached Brit ish Airways ( B A ) ,  w i t h  the 
support of the CAA, w i t h  a proposal to  use such 
records to  obtain wind shear measurements. The 
programme was agreed and, following an i n i t i a l  
t r i a l  period in Summer 1980 (1205 landings, 
REF 7 & 8) , a programme of analyzing the f inal  
2 mins of every landing of BA B-747 a i r c ra f t  
for  about 12,000 landings s tar ted early i n  1981. 
A t  September 1982, data from 9000 landings had 
been analyzed. 

The programme has three aims: 

a. To provide s t a t i s t i c s  on the probabili t ies 
of encountering severe wind shear a t  indi- 
vidual a i rports  i n  a worldwide route struc- 
ture; 

To provide examples of large wind shear t o  
improve our understanding of the forms of 
shear and the associated a i r c ra f t  behavior; 

To prove the usefullness of the Discrete 
Gust Analysis methods (REF 9) i n  detecting 
wind shear and provide a method for  routing 
application a t  Brit ish Airways. 

b. 

c ,  

In i t ia l ly ,  the f l i g h t  data are processed a t  BA 
t o  extract  head wind, cross w i n d ,  a i r c ra f t  
heading, and height data a t  one-second intervals 
for  the 2 mins before touchdown. Brit ish Air- 
ways process these data through a simple w i n d  
shear identification programme and identify:  

a. Landings where the shear magnitude exceeds 
a predetermined threshold, which are  called 
a1 erts ; 

Landings where a combination o f  wind and 
a i r c ra f t  heading change will g ive  a s i g n i -  
f icant  apparent wind shear when considering 
only head wind changes. 
checked for  a l e r t s  b u t  head wind, cross 
wind, a i r c ra f t  heading and height a re  passed 
t o  the RAE; 

Landings where more than 20% o f  the data has 
lo s t  synchronization is  rejected a t  BA. 

b. 

These a re  not 

c. 

1 

British Airways pass to  RAE the head wind and 
height data fo r  a l l  landings, other than those 
identified with (b)  and (c )  above. A t  the RAE,  
the data are  subjected a ser ies  of checks t o  
re jec t  a l l  runs w i t h  suspect data, a f t e r  visual 
inspection, and to  check the val idi ty  of a l l  
the runs with events a t  the 5% probability 
level or  less ,  The a l e r t  threshold is  s e t  a t  
about the 1.5% probability level. 

The wind shears (and turbulence) are  identified 
using the Discrete G u s t  Analysis Method (REF 9 )  
developed a t  the RAE by J. G ,  Jones, T h i s  is 
used to  identify particular patterns in the head 
wind data: 
ramps (Figure 1) .  
t i f y  the length of t h e  ramp as well as i t s  size.  

In this case, s ingle  and double 
These are  f i l t e r ed  to  iden- 

-t Single Ram 

Gradient _. A:, fl 
H 

Gradient 

Figure 1. Wind Shear Patterns 

Typical data a f t e r  9135 landings a t  a total  of  
over 70 airports  around the world is shown in 
Figure 2. The cumulative probability plots 
show a remarkably consistent relationship w i t h  
an exponential dis t r ibut ion form (s t ra ight  l i ne  
on the log-linear plots).  The data include 
both turbulence and isolated wind shears. T h i s  
consistency means tha t  extrapolation t o  predict 
the severity of wind shears a t  the 10-7 proba- 
b i l i t y  level for  landing can be readily justi- 
f ied,  For a single ramp 600 m long, which has 
been suggested as a c r i t i ca l  length in ICAO 
discussions, the 1 i n  107 landings case i s  
l ikely to  be a shear of about 27 knots, Also 
the data show tha t  the longer shears of about 
600 and 1200 m can be normaliz when plotted 

a t  other lengths can be predicted readily, e.g., 
a t  1500 m shear length the 1 i n  107 landings 
case is l ikely to  be a shear of 37 knots. 

as (Speed Change/(Ramp Length) 773 so tha t  shear 
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Figure 2, Cumulative Distribution of Single Ramps (Bri t ish Airways Records) 
Data for  individual a i rports  and both single and 
double ramps of 600 m are shown in Figure 3 ,  and 
cover a wide range of conditions in terms of 

Airport No- of 
Landings 

L H R  241 3 
HKG- - 137 

602 
21 1 

JFK-- 244 

MIA-- - 103 
SIN--.- 266 
KUL -X- 187 

NBO- - - --- 
SF O.............. 

Single Ramps 

--k 
I6OOm 

airport  la t i tude,  topography, time of day, etc.  
There are s ignif icant  differences in the level 

I I I I 8 I .. 
10 20 30 
Speed Change, k t .  

5 8 .  
20 

10- 
10 

Mean Speed Change, k t  

Figure 3, Cumulative Distributions of Single and Double 600 m Ramps a t  a Selection of Airports 
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of ac t iv i ty  a t  different  a i rports ,  b u t ,  despite 
the much smaller sample s izes ,  the general form 
of the distributions are well established. Air- 
ports w i t h  s ignif icant  thunderstorm ac t iv i ty  are  
covered very adequately as the data includes 
l a t e  afternoon and early evening landings a t  
Kuala Lampur and Singapore, which have very high 
probabili t ies of  thunderstorms. The r a t e  i s  
almost one a day i n  the most act ive months 
(Oct./Ny.). The data a lso cover Miami in the 
USA, which has quite a h i g h  probability of t h u n -  
derstorms, although only about half tha t  a t  
Singapore. These three airports  are  included in 
Figure 3, b u t  are  a l l  re la t ively inactive. 

One other aspect being studied from the s t a t i s -  
t i c s  i s  the dis t r ibut ion of wind  shear w i t h  
height above ground. The data are  grouped into 
approximate height bands between 0,  250, 500, 
1000 and 1500 f ee t  for  different  a i rports .  The 

2000 

Height 
ft'. 

1000 

Time to  Touchdown, sec. 
a ,  Low Level J e t  - San Francisco 

resul ts  have ye t  t o  be fu l ly  assessed; b u t ,  as 
the hazard from w i n d  shear is greater as the 
available decision height decreases, the data 
will improve the estimation of the worst cases. 

The s t a t i s t i ca l  data i s  already proving valuable 
i n  helping the RAE t o  advise the Hong Kong au- 
thor i t ies  on possible wind  shear hazards a t  pro- 
posed s i t e s  for  a new airport .  

Examples of head wind variations w i t h  various 
types of wind shear encountered are  shown i n  
Figure 4 (data from REF 7 ) .  The two largest  
events recorded u p  to  August  1982 are  shown i n  
detai l  in Figure 5 (Melbourne) and Figure 6 
(Anchorage). In Figure 4, there a re  examples 
of a low-level j e t  a t  San Francisco (16.6 k t  in 
4s), a sorm f ront  a t  Calcutta (13.6 k t  i n  4s), 
an on-shore wind a t  San Francisco (12.8 k t  in 
16s), and a mountain wake a t  Hong Kong (Double 
ramp of average 10.7 k t  and 4s each ramp). 

1 2ooo 
Height 
ft. 

1000 

Time to  Touchdown, sec. 
c ,  Weather Front  - Calcutta 

2000 

Height 
ft. 

1000 

120 80 40 0 120 80 40 0 
Time to  Touchdown, sec. Time to  Touchdown, sec. 

bo  On-shore Wind - San Francisco d. Mountain Wake - Hong Kong 

Figure 4. Wind Shear Measured from Brit ish Airways Flight Data 

The event a t  Melbourne, F igure  5, demonstrates 
the effectiveness of the calculation of vertical  
as well as horizontal winds and shows an event 
s tar t ing with a 1000 ft/min downdraught and 
about 35 k t  loss of head wind. 
plied thrust to  a level tha t  would normally give 
level f l i g h t  b u t  t h i s  was only suff ic ient  t o  
s tab i l ize  descent r a t e  a t  s l igh t ly  more than 

The p i lo t  ap- 

normal for  an approach. The a i r c ra f t  f ina l ly  
recovered when the wind shear ended and the 
a i r c ra f t  was about 150 f t  above the ground. The 
other major event a t  Anchorage, Alaska, was of a 
similar magnitude and the p i lo t  overshot. (Note 
tha t  the Ground Proximity Warning System (GPWS) 
operated 1 or  2 seconds a f t e r  the p i lo t  decided 
to  overshoot.) 
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Figure 5. Wind Shear a t  Melbourne 
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Figure 6. Wind Shear 

The routine collection of BA data will  end in 
March 1983, as any s ignif icant  extension of the 
s t a t i s t i ca l  data base would be both uneconomic 
and, in view of the orderly nature of the re- 
su l t s  to  date, unnecessary. The NLR,  Holland, 
have been involved in a similar data collection 
programme from KLM Aircraft  (REF 10 & l l ) ,  b u t  
without the assistance of discrete  g u s t  methods 
were unable t o  t e s t  and summarize the i r  data 
readily. 
they are now programming the RAE method so that  
the data from KLM and BA can be compared directly.  
There are  about 8000 landings and take-offs 
d u r i n g  1978 in the KLM data and a further period 
of data collection i s  expected in 1983. 
data will be exchanged with the RAE data. 

Collection of large events from BA i s  expected 
to  continue beyond March 1983 under the CAA's  
special event programme CAADRP. The RAE will 
provide programme advice and a consultance ser- 
vice. 

Following publication of REF 7 & 8, 

T h i s  

1000 -1 
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Vert. 
IJi nd 

-1000 1 80 

vl 
c , o  

2 
73% 

-58  -120 -100 -80 -60 -40 -20 0 - 
Time, SPC. 

b. Winds 

a t  Anchorage 

i 

2.1.2 Thunderstorm Wind Shear 

Quite a few of the major a i r c ra f t  accidents from 
wind shear have occurred in winds associated 
w i t h  thunderstorms. In the Summer of 1982, the 
US National Center for  Atmospheric Research 
(NCAR) and the University of Chicago organized 
an extremely successful programme around Denver, 
Colorado - the Joint  Airport Weather Studies 
(JAWS) Project (REF 12) - t o  investigate the 
structure of thunderstorms and their winds. The 
RAE were fortunate to  be invited to  participate 
w i t h  the HS-125 research a i r c ra f t  (Figure 7) .  

The RAE HS-125 was i n  Colorado for  three weeks 
i n  June/July 1982, and flew 34 experimental 
sor t ies  of which 16 were f l i gh t s  i n  thunderstorm 
winds a t  heights between 1000 and 3000 f t  above 
ground level. The other f l i gh t s  covered a 
variety of related tasks. The RAE programme was 
supported by funds from the U K  Department of 
Industry, U K  Ministry of Defense, CAA, Smiths 
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Industries plc., US NCAR, Marconi Avionics plc., 
Ferranti plc., and Signal Processors L td .  

40 

30 
Head 
Wind 20 

k t  1 0 -  

O c  

. . . . ... .. . 

, .. 1 

- 
0 

- 

- 

Figure 7. RAE HS-125 Research Aircraft  

In addition to  i t s  basic instrumentation to  
measure turbulence, including wind shear, in 
three axes a t  frequencies u p  to  about 20 Hz (a 
minimum wavelength of 6 m a t  typical speeds used 
for  JAWS f l igh t s ) ,  the RAE HS-125 was u n i q u e  
among the participating a i r c ra f t  i n  having a 
wind shear detection and display system fit ted. . .  
the Smiths Industries 2 pointer VS/ERO (Vertical 
SpeedlEnergy Rate Indicator). 
the detection elements for  two other systems, 

I t  a lso carried 

viz: 

a .  

b. 

Laser True Airspeed System (LATAS) , which 
detects wind shear several hundred metres 
ahead of the a i rc raf t ;  

Marconi A0660 Doppler Velocity Sensor, 
which could be used as  the basis of a 
ground speed/ai rspeed display. 

These systems are discussed in a l a t e r  section. 

The edit ing and analysis of the JAMS f l igh t s  
i s  proceeding and an example of one of the more 
dangerous microburst events i s  shown i n  
Figure 8 ,  
smaller events on e i ther  side. 
sees the head wind increase by about 25 k t  
following the i n i t i a l  dip of 8 k t .  I t  stays 
a t  a mean of about 25 k t  fo r  5.5 seconds and 
then f a l l s  by 35 k t  followed by an increase of 
18 k t .  The f inal  action is  a smaller drop of 
10 k t ,  The main event covered a distance of 
about 2.2 km, or about 30 - 35 seconds of f l i g h t  
time a t  normal j e t  transport a i r c ra f t  approach 
speeds. Calculation of the downdraught i s  not 
yet complete b u t  the mean f l i gh t  incidence re- 
mains constant whereas the pitch a t t i tude  i n -  
creases by about 3 degrees. T h i s  indicates a 
downdraught of about 1200 f t / m i n .  The flow 
was also very turbulent and produced normal ac- 
celeration changes of +/- lg 'a t  the speed of 

The primary microburst pattern has 
The main event 

2 

Normal 1 
' g '  

G r 0 u n d 2 ~ ~ 1  0 
speed 

k t  2 3 0 ~  H t ,  
220 f t ,  

6000 
35 40 45 50 55 

Figure 8. Thunderstorm Microburst - JAWS Project 
RAE HS125 - Flight 792, 
Run 3 .  

250 k t  CAS used fo r  the f l i g h t  tes t s .  Full an- 
a lys i s  of events such as these will provide a 
detailed understanding of the form of one of  
the more dangerous forms of wind shear by iden- 
t i fying not only i t s  magnitude, b u t  a lso i t s  
development and decay. 
a bet ter  understanding of the meteorological 
conditions l ikely to  cause microbursts. 

From th is  should come 

In marked contrast  t o  the turbulence i n  a micro- 
burst ,  f l i gh t  i n  the vicini ty  of intense preci- 
pi ta t ion,  including 3 cm diameter hai l ,  was 
generally i n  calm a i r .  Wind data for  these 
f l igh ts  are being analyzed as are  the resu l t s  
for  thunderstorm fronts  and general outflows 
with wind changes o f  30 - 40 k t ,  which often 
included s ignif icant  updraughts on which the 
HS-125 could almost soar a t  idle  thrust .  

The data from the JAWS project will give a 
bet ter  description of some of the worst shears 
that  nature can produce, which will be of great 
value for  use in wind  shear simulations to  de- 
velor, detection and display systems, Also, by 
studying wind shear events a t  a i rports  on the 
BA B-747 routes, i t  may be possible to  estimate 
the probabili t ies o f  encountering a s ignif icant  
microburst. 
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2.2 Hazard Levels 

A t  f i r s t  glance, i t  may seem strange that  there 
i s  s t i l l  no straightforward way of estimatinq 
?he potential hazard to an a i r c ra f t  of a given 
variation of horizontal and vertical  wind (wind 
shear),  There i s  general agreement tha t  the 
height excursion from the intended f l i gh t  path 
i s  a measure of the potential hazard and, as 
th i s  i s  a greater hazard near the ground, i t  i s  
best considered as a fraction of the height 
avai lable  

The d i f f icu l ty  in re la t ing such height losses 
t o  a given wind shear l i e s  in the length of 
wind shears, e.g., the 30 or so seconds taken 
to  pass th rough  the microburst of Figure 8 a t  
approach speeds. During a time interval of th i s  
length control actions will  be taken in both 
pitch and thrust  by e i ther  a p i lo t  or  an auto- 
matic control system, The  control response will 
have a s ignif icant ,  even dramatic, e f fec t  on 
the height excursions. This i s  c lear ly  i l l u s -  
trated when the s t ick  (and  th ro t t le )  fixed 
response of REF 13 is compared w i t h  piloted 
simulation (REF 14) through the same w i n d  shear. 
I n  the f i r s t  case, the usually l igh t ly  damped 
long period (Phugoid) response i s  excited, 
whereas in the piloted case, i t  i s  almost to ta l ly  
suppressed, Also i n  the f i r s t  case, very large 
height osci l la t ions occur which are  largely 
absent from the piloted case. Pi lots  respond 
well to  motion with periods longer t h a n  a second 
or two, and the Phugoid is  typically of 30-40 
seconds period; so the above resu l t  should n o t  
be very surprising. 

Piloted simulator studies have been used for many 
tes t s .  However, such simulation introduces a 
much wider number of variables than simplified 
analytical methods, so i t  i s  highly desirable 
t o  establish a sui table  analytical method for  
assessing suscept ibi l i ty  t o  wind shear, T h i s  
method should then be tested using piloted simu- 
1 a ti on. 

For any analytical method, the form of pitch and 
th ro t t l e  control has to  be defined from the s t a r t .  
One simple pitch control mode considered by the 
a u t h o r  i s  f l i gh t  w i t h  constant pitch a t t i tude ,  
This i s  n o t  unreasonable as it  i s  p i lo t s '  control 
of pitch a t t i tude  which modifies the Phugoid and 
introduces the concept of speed (or f l i g h t  path) 
s tab i l i ty .  
modified to  a pair  of exponential modes. One i s  
mainly a well-damped incidence response and the 
other i s  mainly a lightly-damped speed response, 
Figure 9 shows some typical responses w i t h  pitch 
constraint  and without any th ro t t l e  action. The 
single ramp head wind change resu l t s  in an almost 
constant height ra te .  The double ramp downburst 
(single ramp downdraughts are  very unlikely as 
the mean vertical  wind is  zero) prl juces a loss 

The basic longitudinal motion i s  

of height, 
Actual maximum height deviat 
the thrust  response function 

on w i  
or  a 

i 

1 depend on 
reversal of 

the wind shear (or  both). 
o f  height deviation on pitch and thrust  control 
functions and w i n d  shear pattern, which makes 
i t  d i f f i cu l t  t o  f i n d  generally accepted ways of 
relating the potential hazard to  the wind shear, 

However, the use of pitch constraint  seems a 
promising s ta r t ing  point, as do the wind shear 
patterns identified by discrete  g u s t  methods. 
Current research a t  the RAE i s  investigating 
various th ro t t l e  control modes suggested by 
stuay of t h ro t t l e  ac t iv i ty  on BA B-747's and 
other a i rc raf t ,  

I t  i s  hoped tha t  th i s  work will identify the 
most important a i r c ra f t  character is t ics  (e.g., 
speed, s t ab i l i t y ,  thrust margin, min imum drag  
speed) , and wind shear character is t ics  (e.g. , 
speed change, length). Aircraft  can then be 
categorized i n  groups w i t h  s imilar suscepti- 
b i l i t y  to  shear, T h i s  will a lso give a basis 
f o r  presenting the most useful information to  
pilots.  

This study should be completed during 1983, 
including t e s t s  of various features in a piloted 
simulation. 
w i n d  shear yet  t o  be resolved as,  without i t ,  
i t  i s  very d i f f i c u l t  to  establish how to use 
w i n d  shear data t o  help p i lo t s ,  other than 
through generalized warnings. 

2,3 Wind Shear Detection and Display Systems 

These systems can be divided into two groups: 

a .  Ground based sensors 

b ,  Airborne sensors 

To be a viable commercial proposition and ,  
perhaps even t o  be considered as acceptable for  
complying w i t h  any Aviation Authority require- 
ments, any system must provide continuous infor- 
mation of value to  pi lots  and, for  ground based 
systems, a i r  t r a f f i c  controllers.  T h i s  informa- 
t ion cannot be wind shear, as the s ignif icant  
events are rare;  and, because rapid response i s  
essential when wind shears occur, i t  i s  vi ta l  
t h a t  p i lots  and  a i r  t r a f f i c  controllers have 
confidence i n  the system, T h i s  can only be 
earned by long experience of receiving correct 
(and useful ) information without "soft" fa i lures  
prior to  i t s  f i r s t  genuine s ignif icant  wind shear 
indication. Thus, i t  i s  vi ta l  when designing 
systems t o  consider f i r s t  the i r  value i n  normal 
operating conditions. Having done this, then 
the price must be made acceptable. 

In addition, the author has always considered 
tha t  any airborne display system must be promi- 
nently located on (or perhaps close to)  the pri-  
mary flying display and provide continuous ana- 
logue information during a l l  f l igh ts .  The idea 
of a wind shear warning system without an asso- 
ciated analogue display i s  impractical. 
events are very rare. 

I t  i s  this dependence 

I t  i s  the most important aspect of 

Real 
This means t h a t  protection 
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Figure 9. Response to  Wind Shear with Pitch Constraint 

against nuisance events i s  very d i f f i cu l t  w i t h -  
o u t  introducing a l o t  of smoothing w i t h  asso- 
ciated lags i n  producing the warning. Delays 
have a dramatic effect  on height loss ,  which is 
approximately proportional t o  delay squared, 
Thus, 'warning only' systems are  l ikely to  be 
e i ther  too l a t e  or  generate a lack of confi- 
dence because of nuisance warnings so tha t  
pi lots  need t o  crosscheck w i t h  other instru- 
ments before responding. 
delay. 

In the following discussion on detection and 
display systems, brief mention will be made of 
known systems, b u t  only the UK ac t iv i t i e s  will  
be duscussed in any detai 1 ., 

2,3.1 Potential F1 ight Path/Energy Rate 

These are  the only type of airborne display that  
are  commercially available and they are  adver- 
t ised by the following three companies: 
Flight,  Inc., USA, SFENA, France, and Smiths  
Industries plc, UK. The author only has exper- 
ience w i t h  the Smi th  Industries system, which i s  
the two-need1 e VS/ERI (REF 15). 
Flight Path Displays offer  similar capabi l i t ies  
and are  most easi ly  provided on Electronic Dis- 
plays (Head Up o r  Head Down). 

T h i s  creates fur ther  

Displays 

Safe 

Potential 

The basic principle of these systems is to  es- 
tabl ish the r a t e  of change of energy, E ,  where 

dE/d t  = VTrue(dVTrue/dt) + gdH/dt 

To compensate fo r  lags in the a i r  data system 
when the a i r c ra f t  i s  responding to  thrust, or 
f l i g h t  path changes, a pair of accelerometers 
(normal and longitudinal) are f i t t e d ,  and reso- 
lution of these into f l i gh t  path axes required 
measurements for  estimates) of incidence angle, 
The r a t e  o f  change of energy can be displayed 
as the f l i gh t  path tha t  will  be attained i f  no 
t h ro t t l e  action i s  taken to  counter the situ- 
ation. 

Various poss ib i l i t i es  ex is t  f o r  displaying the 
information b u t  they are  essent ia l ly  e i ther  a 
s i tuat ion display of the potential f l i g h t  path 
(or potential climb ra te ) ,  o r  a t h ro t t l e  direc- 
tor.  Of the various systems, only the Safe 
Flight System is  a th ro t t l e  director ,  the others 
a re  s i tuat ion displays. The s i tuat ion displays 
have the advantage of improving thrust manage- 
ment as they can be used to  indicate excess 
thrust  as well as wind shear. Potential f l i g h t  
path i s  probably more useful as i t  is  associated 
with the At t i t ude  Display, ADI, which together 
w i t h  the Airspeed Indicator (ASI), are  the most 
actively scanned instruments dur ing  take-off and 
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landing. However, the Vertical Speed (VSI) i s  
part of the primary flying instruments and a good 
location i f  the WBI cannot be modified, T h i s  i s  
where the Smiths Industries and SFENA displays 
are located. 
The Smith Industries VS/ERI i s  shown i n  a nominal 
thunderstorm microburst (downdraught) s i tuat ion 
i n  Figure 10, I t  has been tested on piloted sim- 
ulators ( R E F  15) and flown i n  a BA Tr i s ta r ,  a 
Britannia Airways B-737, the RAE BAE 1-11, which 
has advanced electronic displays, and on the RAE 
HS-125. In a l l  simulated wind shear cases, the 
pi lots  found tha t  the VS/ERI gave the i r  f i r s t  
indication of wind shear and this i s  supported 
by a few encounters with moderate shears i n  the 
f l i gh t  t r i a l s .  However, there i s  some cr i t ic ism 
of  using the VSI for  the display because many 
pi lots  do not usually include i t  i n  the i r  pri-  
mary scan. 

VS/ERI INDICATIONS IN THUNDERSTORM WIND SHEAR 

HEADWIND 
VERTICAL SPEED 

ENERGY RATE 
1000 FPM 

DOWNDRAUGHT INCREASING 
TAILWIND 

Figure 10. Expected Response of the Smiths 
Industries '  2 Pointer VS/ERI in 
a Thunderstorm Microburst 

A time history of the response of the Smiths 
Instrument i n  the microburst of Figure 8 is 
shown i n  Figure 11. 
needle responding direct ly  to  the r a t e  of change 
of airspeed. 
t o  the downdraught i n  this case because the 
p i lo t  increased pitch angle to  compensate. 
these types of  instruments have a lag in response 
to  wind shear as they must calculate the r a t e  of 
change of  speed. 
lag to  shear i s  about 1.6 sec. Note that:  (1) 
The lag is  only about 0.6 sec because the ac- 
cel erometer terms provide compensation fo r  ra tes  
of change of velocity re la t ive  to  the ear th ,  b u t  
n o t  for  shears, which a f fec t  airspeed with l i t t l e  
e f fec t  on ground speed; (2) The lag is made 
greater i n  Figure 11 by the increase in pi tot-  
s t a t i c  system lag w i t h  a l t i tude ,  as Denver is 
over 5000 f ee t  above sea level and hot. No 
scale i s  shown on the difference between the two 
needles as the t e s t s  in Figure 11 were flown a t  

This shows the Energy Rate 

The VSI needle does n o t  respond 

All 

In the Smiths VS/ERI, t h i s  

I t  i s  interesting to  note tha t  the difference 
between the two needles i n  the microburst i s  
must greater when the speed loss occurs. If  
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thro t t le  had been used in response t o  the s p l i t  
between the needles, then a decrease i n  thrust  
would not be demanded until  the speed was about 
15 k t  above datum (Datum = 025 k t )  b u t  an in- 
crease i s  called fo r  while s t i l l  3 k t  ABOVE 
datum. 
to  the steeper gradient of velocity (dV/dt) near 
the centre of the microburst, where V i s  also 
greatest .  Thus giving a much fas te r  response 
in the midst of the microburst, 

2.3.2 Groundspeed/Airspeed Displays 

The principle of th i s  system i s  tha t  the hazard 
from wind shear i s  reduced by maintaining the 
h i g h e s t  airspeed compatible with a safe  touch- 
down groundspeed. This principle i s  generally 
confirmed by the RAE studies of hazard levels. 
Thus, instead of flying approaches on airspeed 
relat ive to  a target  threshold speed, they can 
be flown to keep the lower of e i ther  airspeed 
or equivalent groundspeed above the target  
speed. In the more usual case w i t h  a head wind 
a t  touchdown, this will lead to  higher than 
usual airspeeds on the approach. 

In the case of a microburst (Figure 81, the use 
of this groundspeed/airspeed method would i n h i h i t  
the normal reaction to  reduce thrust as airspeed 
increases because the groundspeed hardly changes 
and will be the lower speed, Thus, a higher 
airspeed is maintained to  help cope w i t h  the 
downdraught 

This fortunate response i s  largely due 



The main complications with this system a r i se  
when high head winds push  the approach airspeed 
up to  f l ap  limiting speeds. If  f lap  angle i s  
reduced, then the speed safety margin f a l l s .  
In most cases, i t  would seem best from a per- 
formance point of view to  keep airspeed below 
the f lap,  limiting speed even i f  i t  means tha t  
the groundspeed f a l l s  below the target  speed. 
However, this could be a poor philosophy t o  
adopt i f  the instrument i s  to  have a c lear ly  
defined role as an indicator of m i n i m u m  speeds. 

The head wind variation i n  the microburst 
(Figure 8) is a d i rec t  indication of the dif-  
ference that  would be seen between the two 
needles of a 2-pointer ASI, 
would place the groundspeed lower than the 
airspeed pointer 

The information on any AS1 can be improved by 
u s i n g  a laser  system, such as the LATAS which 
looks ahead of the a i r c ra f t ,  as the airspeed 
source, 

The airspeed/groundspeed display does n o t  give 
any information on downdraughts , which will  
appear as a t ransient  decrease in normal accel- 
eration and a subsequent increase i n  descent 
ra te ,  b u t  i t  has the advantage of being located 
on the airspeed indicator which i s  continuously 
monitored dur ing  both take-off and landing. 

2.3.3 Laser Airspeed Systems 

Laser systems measure airspeed by Doppler an- 
a lysis  of reflections from minute par t ic les  
(aerosols) in the atmosphere, These par t ic les  
have an extremely rapid response to  airspeed 
changes and can thus be used as a d i rec t  mea- 
sure of airspeed in a region remote from the 
laser  equipment, Two main types of laser  are  
avai lab1 e: 

Positive head w i n d  

a .  

b. 

Pulsed systems which use time gating to  
establish the range and short pulse 
duration (typically 1-2 microseconds) t o  
obtain range resolution. These systems 
can operate t o  quite long range and the 
s ize  of the optical aperture re la tes  t o  
the amount of backscattered signal re- 
ceived. Range resolution is  constant 
a t  about 300 m. 

Cont i  nuom Wave (CW) focused systems where 
the beam i s  focused to  a waist a t  remote 
point to  give a maximum level of illumina- 
tion and t h u s  the greatest  signal returns 
from that  point. The sharpness of t h i s  
focusing i s  greatest  a t  short  range and 
w i t h  a larger optical aperture. 
resolution can be very f ine,  b u t  increases 
rapidly a t  long ranges, and optical aper- 
ture  i s  determined by the resolution and 
maximum range required, 

Range 

The choice between the two systems depends on 
whether 300 m range resolution is adequate, and 
the maximum range required. Research i n  the UK 
has concentrated mainly on the CW focused sys- 
tems. The general principles of the system are 

shown i n  Figure 12. The weak return signal i s  
rapidly converted to  a Doppler Spectrum and suc- 
cessive spectra integrated to  give very clear ly  
defined spectra. 
detection, a few hundred integrations are  usually 
adequate and an output data r a t e  of more than 100 
samples a second can be obtained. 

For low a l t i tude  wind shear 

b )  Illumination intensity - 
Laser Beam 

a )  Beam geometry 
Figure 12.  Principles o f  a CW Focussed 

Laser Anemometer 

One useful feature of CW laser  signals i s  infor- 
mation on the spread of airspeeds over a larger 
range which is  given by the minimum and maximum 
velocit ies.  W i t h  th i s  data,  i t  i s  possible to  
distinguish real shear from turbulence. Figure 
13 shows the RAE/RSRE LATAS airborne laser  sys- 
tem signals recorded i n  the microburst of Figure 
8, and the width of the peak of the velocity 
spectra clearly ident i f ies  the real shears. The 
difference between the laser  and the a i r c ra f t  
true airspeed i s  a d i rec t  measure of the shear 
gradient over 250 m (about 4 seconds of f l i g h t  
time a t  normal approach speeds). These shear 
gradients have values of around 4 kt/sec ( 2  m/s/s) 
a t  approach. 

The RAE i n  close collaboration with the Royal 
Signals and Radar Establishment ( R S R E ) ,  who have 
been responsible fo r  the development of the 
optics and signal processing equipment, have 
tested both ground based and airborne CW laser  
systems. 
dioxide lasers  

Both systems use eye-safe carbon 

The main aims of the research programne have been 
to  establish the character of laser  wind signals 
and the essential  features required i n  production 
versions for  regular use a t  a i rports  or i n  a i r -  
craf t .  

2.3.3.1 Ground Based System 

A ground based system (Figure 14)  was tested a t  
RAE, Bedford, and the resul ts  compared well w i t h  
more conventional anemometer data Power Spectra 
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3r7d Discrete Gus t  Analysis of these data con- 
firmed that  the laser  system was a re l iab le  source 
o f  wind information. The system used 30 cm dia- 
meter reflecting telescopes, was monostatic and 
had an output power of 5 watts. 
sa t i s fac tor i ly  out t o  ranges of about 1 km. 

I t  was used 

2601 
LATAS 

AIRSPEED__ I 

AIRSPEED 

CAS 

35 40 45 50 55 
Time, sec, 

Figure 13. 'JAWS' Microburst Response o f  
RAE/RSRE 'LATAS' System 

Any ground based system for  a i rport  use would 
need to  make wind measurements from about 0,5 km 
to 6 - 10 km and preferably w i t h  a fu l l  360 deg 
azimuth scan. The measurements could then be 
used to  give a i r  t r a f f i c  continuous wind infor- 
mation for  a l l  landing and take-off points, and 
also identify any wind shear development, Mea- 
suring both i t s  magnitude and i t s  track re la t ive  
to landing and take-off paths. 

The main problem with operating a t  such long 
ranges with a CW system i s  the large s i ze  of the 
optical aperture required which is  about 1-2 m 
diameter. T h i s  could be expensive, although 
fu l l  vis ible  wavelength accuracy is not required, 
and, i n  theory, there may be a l imi t  t o  the ef- 
fect ive aperture s ize ,  despite the geometric 
s ize ,  because of the e f fec ts  of small scale 
turbulence. 
data to  confirm this limit on effect ive aperture, 
b u t ,  i f  the present estimates are  correct,  i t  
may not be possible to  use apertures greater 
than about 1 m diameter. The author views this 
theoretical l imi t  with some scepticism as: 

There is not appropriate experimental 

Figure 14. Ground Based Laser Airspeed System 

a. The theoretical  data is only supported by 
experimental resul ts  from bi-s ta t ic  systems 
with the beam only a few fee t  above an 
ar id  surface, and 

b. Other l imitations on laser  effectiveness 
have proved less  of a constraint  than 
theoretical estimates woul d suggest. 

However, unti l  t e s t s  can be made to  see whether 
such a l imi t  on effect ive aperture ex is t s ,  i t  
will be d i f f i cu l t  t o  persuade commercial com- 
panies t o  invest in the development of an a i r -  
port system based on CI4 lasers .  Pulsed lasers 
do n o t  rely on focusing for  range definit ion 
and may be more sui table  for  a ground based 
system. 
detailed evaluation of a pulsed system against 
other wind measuring systems. 

2.3.3.2 Airborne System 

An airborne system (LATAS), Figure 15, ( R E F  16),  
has been flying i n  the RAE HS-125 fo r  about two 
years and is  proving very successful and rei iable  
for  measuring airspeeds a t  remote points u p  to  
about 300 m ahead of the a i rc raf t .  As Figure 13 
shows, t h i s  gives extra v i ta l  seconds of warning 
of  wind shear. The system uses CW optics made 
by RSRE and a 3-watt waveguide carbon dioxide 
laser  manufactured by Ferranti. 
experience, the c r i t i ca l  areas fo r  r e l i ab i l i t y  
were expected to  be the laser ,  the optical t ra in  
and the germanium window used to  transmit the 
infrared beam. In the event the lasers  have 
been operating f o r  periods of u p  t o  s ix  months 
without any at tent ion,  the optics have not re- 
quired any adjustment a t  a l l ,  except a f t e r  laser  
changes, and the front  surface of the germanium 
window, w i t h  i t s  special protective coating i s  
unmarked a f t e r  2 years of f l i gh t  t r i a l s ,  which 
included f l i g h t  i n  so f t  hail .  Figure 16 shows 
the s t a t e  of the surrounding paint,  which was 
pit ted down to the metal, a f t e r  f lying i n  heavy 
rain and s o f t  hail .  The window surface i s  un- 
harmed. Reliabil i ty of this level from proto- 
type experimental equipment argues very well for  
a re1 iable commercial development, 

However, as yet  there has not been a 

Based on ea r l i e r  
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Figure 15. Airborne Airspeed Laser System (LATAS) 

4 ., 00- 

3.50- 

The only real obstacle to  commercial development 
i s  finding a sui table  incentive fo r  a i r l ines  to  
purchase such a system. 
t h a t  the u n i t  earns i t s  keep by saving a i r c ra f t  
operating costs,  or  that  airworthiness require- 
ments cal l  for such a system t o  be f i t t e d ,  The 

This requires e i ther  

Figure 16. Effect of  Hail on Germanium Window 

research programme i n  the UK i s  addressing pos- 
s ib le  features tha t  could produce savings i n  
operating costs. Such as: 

a ,  an e f f ic ien t  autothrot t le  sensor which is 
responsive t o  s ignif icant  shear w i t h  negli- 
gible  lag and ye t  able t o  ignore short  
period turbulence; 

b. a control system for  tyre  spin-up tha t  
accurately measures both ground and 
tyre  speed; 

a sensor for act ive ride smoothing and/or 
gus t  load al leviat ion control systems 
which provides adequate lead. 

c. 

For th i s  l a s t  application the system has to  
function a t  a1 1 heights , and great advances 
have been made i n  obtaining re l iab le  signals 
in very l o w  backscattering conditions a t  h i g h  
a l t i tude.  Figure 17 shows an example of the 
signal to  noise r a t io  measured i n  a climb to  
43000 f t  pressure al t i tude.  
relationship between this data and v i s ib i l i t y ,  
i t  should be noted tha t  the qui te  high signal 
to  noise r a t io  a t  l ow a l t i tude  corresponded t o  
a v i s ib i l i t y  of about 70 nm. The system is  not 
yet able to obtain a usable signal i n  a l l  
conditions a t  h i g h  a1 ti  tudes, a1 though there 
are  no problems near the ground. 

To give some 

XI o4 
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I 

ST. TEMP (DEG CENT) 
Figure 17. Example of Variations in 

Backscatter and Air 
Temperature W i t h  Height 
(RAE/RSRE LATAS) 

The system also has uses for  special test pur-  
poses. The data of Figure 17 can be converted 
direct ly  into backscatter coefficient,  and these 
data are  needed to  a s s i s t  i n  the design and 
evaluation of proposed earth s a t e l l i t e  laser  
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systems for  global wind measurements. 
application is for  accurate determination of 
s t a t i c  pressure errors on airc:-aft. The true 
s t a t i c  pressure can be calculated by measuring 
total  pressure, which is  usually unaffected by 
the a i r c ra f t  flowfield, and to ta l  temperature, 
as well as the t rue airspeed ahead of the a i r -  
c ra f t .  T h i s  can be compared w i t h  the pressure 
measured by the a i r c r a f t  s t a t i c  pressure system, 
The laser  system could be mounted i n  place of 
a radar fo r  these t e s t s  and frees  the a i r c r a f t  
t o  obtain pressure e r ror  data under any f l i g h t  
conditions w i t h o u t  ground based ranges, t r a i l i ng  
cones or  calibration a i r c ra f t .  

The next stage of wind shear research w i t h  the 
LATAS system is to  develop and t e s t  various laws 
and simple displays using a 2-pointer AS1 and/or 
a Fast/Slow indicator on the ADI. These will 
be flown on the HS-125 and also assessed on 
larger a i r c ra f t  i n  the RAE, Bedford, piloted 
f l i gh t  simulator. 
been displayed only to  the p i lo t  on rudimentary 
meters mounted on the cockpit coaming. 

Another 

So f a r  the LATAS signals have 

3.0 VORTEX WAKES 
Vortex wakes are  another invis ible  hazard 3 a i r -  
c r a f t ,  mainly d u r i n g  take-off and landing, a l -  
t h o u g h  some encounters in cruise have also been 
found (REF 4) .  

The RAE has been actively involved i n  research 
i n  th i s  f i e ld  (REF 3,4,5 & 6) ,  although no new 
experimental work has been dcce since 1977. That 
i s ,  unti l  recently, when two mili tary accidents, 
one t o  a f ighter  and the other t o  a j e t  t ra iner ,  
highlighted the need fo r  methods of assessing 
hazard levels for  a wider range of a i r c r a f t  
than the civi l  transport group. To support these 
studies,  some further vortex wake measurements 
were made i n  f l i g h t  using an RAE designed very 
f a s t  response airflow sensor on the HS125. 
sensor i s  a f ive  hole conical yawmeter w i t h  
surface mounted transducers and has a response 
time lag of about 1 millisecond. The response 
when enclosed i n  a balloon, which was then 
burst, i s  shown i n  Figure 18. The response i s  

The 

so f a s t  tha t  the i n i t i a l  pressure resonances 
following the bursting of the balloon are  c lear ly  
identified.  An example of one of the vortex 
measurements i s  shown i n  Figure 19. 
i t ion  of the vortex s t ructure  w i t h  data a t  every 
5 cm is quite remarkable. 

Assessment of hazard levels needs three main 
i n p u t s  : 

The defin- 

a. 

b. 

C. 

3,l 

Information on Vortex structure;  

A means of re la t ing this s t ructure  t o  the 
rol l  control capabili ty of the encountering 
a i rc raf t ;  

Criteria fo r  acceptable ro l l  disturbance, 

Vortex Structure 

When trying to  estimate the probable vortex 
induced veloci t ies  for  advice to  the accident 
investigators on the two mili tary a i r c ra f t  
accidents, the author found two main d i f f icu l t ies .  
F i r s t  the two most generally used relationsihps 
between tangential velocity, vort ic i ty  and radius 
were not very sui table  and secondly there were 
d i f f i cu l t i e s  in establishing the probable core 
radius, i .e. ,  the radius to  the peak tangential 
velocity. 

T h e  two most commonly used equations for  vortex 
structure have been 

-1.256 (r/R)2 } 
which was developed by Squires (REF 17 & 181, and 

C = & {  1 + I n  (r/R) 

from Kuhn and Nielson ( R E F  19),  

where V = tangential velocity 

K = vort ic i ty  

R = core radius 

Pressure sensing head mounted 

punctured, 
Pressure 1 \ inside a balloon which was 

0 10 20 30 
Time , mi 11 i sec. 

Response of the RAE 5-Hole Airflow 
Sensor To A Balloon Burst 

Figure 18. 

r = radius 

Vc = maximum V (+.e.,, a t  core radius) 

These two models are compared i n  Figure 20 a t  
u n i t  peak velocity. 
vortices,  the Squires model contains more of 
the total  vor t ic i ty  inside the core and this 
resul ts  i n  a more rapid f a l l  i n  velocity out- 
s ide the core. However, the model does re la te  
veloci t ies  t o  the total  vort ic i ty .  The Kuhn 
and Nielson model i s  quite a good f i t  to  experi- 
mental data around the core diameter and outside 
i t ,  b u t  unfortunately i t  i s  not related to  
total  vort ic i ty .  Indeed a t  large distances 
from the core the vort ic i ty  tends to  inf ini ty .  
T h i s  is not problem when f i t t i n g  experimental 
data,  b u t  i t  does make i t  very d i f f i cu l t  t o  
use when estimating Vortices from an i n i t i a l  

When compared w i t h  measured 

1 
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Using the RAE Fast Response Air Data 
Sensor 

knowledge of total  vort ic i ty .  The author has 
therefore developed a model (Figure 20) which 
matches the experimental data as well as the 
Kuhn and Nielson model and i s  related to  to ta l  
vor t ic i ty ,  viz 

V = 20 { tan-' 1.392 (r/R)) 
r3 (r/R) 

2 

Having defined a sui table  formula, i t  i s  then 
necessary t o  derive values of total  vort ic i ty ,  
K, and core radius, R ,  so tha t  a velocity dis- 
tr ibution can be defined, Various methods a re  
discussed i n  R E F  20. Except i n  ra re  cases, i t  
i s  not worthwhile u s i n g  the more sophisticated 
methods, and the author of t h i s  paper normally 
uses 

where P = ra t io  of centreline l i f t  per u n i t  
span 

L = total  l i f t  

p = a i r  density 

b = wing  span 

V t  = a i r c ra f t  t rue airspeed 

P i s  chosen as 4 / r  (= 1.27) fo r  cruise configu- 
rations ( e l l i p t i c  l i f t  d i s t r ibu t ion) ,  or 2 fo r  
landing configurations {triangular l i f t  dis-  
t r ibut ion) ,  

Estimation of radius i s  l ess  well-defined as  the 
growth depends strongly on the level of turbu- 
lence i n  and close to  the vortex. However, the 
worst case is  the slowest growth and experimental 
evidence ( R E F  21) suggests tha t  Owen's formula, 
which i s  incorporated in Squires Vortex Formula 
and predicts growth proportional t o  the square 
root of vortex age, i s  reasonable up  t o  the point 
where the two main vortices s t a r t  t o  interact ,  

After this point, the experimental evidence 
( R E F  22) suggests tha t  the radius remains con- 
s t an t  and the vor t ic i ty  reduces 1 inearly w i t h  
time. (Actually, the vort ic i ty  i s  redistributed 
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Figure 20. Comparison of Vortex Models 

from the main vortices into small eddies.) 
22 indicates that  the changeover occurs when 
( d  L i f t  Coefficient/(b Aspect Ratio)) i s  9.6. 
I t  may be coincidental that  w i t h  the author 's  
vortex formulae, this occurs when the to ta l  
induced velocity a t  the point midway between the 
pair of vortices is  equal t o  the tangential 
velocity a t  the core radius. 
between the vortex centres i s  then about 9 vortex 
rad i i ,  
vortex models for  t w i n  vortices a t  t h i s  separa- 
tion. 

For typical c iv i l  transport a i r c ra f t  on the 
approach, the changeover occurs a t  about 2-3 nm. 
Thus, normal separation requirements (REF 23) , 
which are 3 nm or more, a l l  re la te  to  the region 
where the vort ic i ty  i s  decaying. 

3.2 Vortex Strength 

Vortex strength i s  a re la t ive feature i n  the 
context of a i r c ra f t  operations and i s  defined 
here as the ra t io  of vortex induced rol l ing 
moment to  the maximum ro l l  control moment of 
the encountering a i rc raf t .  

REF 

The separation 

Figure 21 shows t h e  form of the three 

Studies a t  the RAE 

VORTEX STRENGTH = e ( K / D )  f { $ , Taper } 
PMAX- e 

where D = vortex diameter( = 2R) 

pMAX = maximum ro l l  ra te  suffices 

g = generating a i r c ra f t  

e = encountering a i r c ra f t  

The s ize  and shape function for the usual case 
of t w i n  vortices (Figure 21) is found, Figure 23, 
t o  be only weakly dependent on b /D fo r  a i r c ra f t  
of the same span as the generatitg a i r c ra f t  
(b/2R = 9) down to about 20% of tha t  span 
(b/2R = 1.8) , and for  most normal values of taper 
r a t io  between 0.3 and l o o .  
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Thus  

VORTEX STRENGTH a ( K / D ) g / (  pMAXb), 

Tkis can be evaluated using the vortex equations 
discussed in the previous section and the ap- 
proximate relationship fo r  transport  a i r c ra f t  
(Figure 23) tha t  

50 
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5 -  
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where MTOW - maximum takeoff weight 

W - weight 

X Pi tt Special 

I t I A 

A = aspect r a t io  

CL = l i f t  coefficient 

d = separation between a i r c ra f t  

I f  a general rule for  categorizing a i r c ra f t  i s  
required, then p CL and pMAX are  approximately 
the same for  most transport  a i r c ra f t ,  and many 
long-range a i r c ra f t  tend t o  have both a higher 
ra t io  of maximum take-off weight (MTOW) t o  
maximum landing weight ( M L W )  and higher aspect 
ra t io ,  A. T h u s ,  the simplest relationship i s  

VORTEX STRENGTH 0 ( M T O W ) ~ ' / ~  J ( M T o w ) ~ ~ / ~  

xlo-l 
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Figure 21. Twin U n i t  Vortices (K=R=l) a t  
9~ Separation, 

The range of (MTOW)g/(MTOW)e are  plotted against  
recommended separation distances in Figure 24 
(a)  for  CAA and Figure 24 ( b )  fo r  ICAO, 
CAA recommendations a re  generally grouped i n  a 
way which agrees w i t h  the above weight relation- 
ship, Although i t  would seem tha t  a weight 

The 
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Figure 22, Vortex Strength: Size and Shape 
Function, f ,  a t  9R Separation 

grouping for  a i r c ra f t  below about 7000 kg would 
be useful especially for  separation from the 
Heavy group. Also i t  looks as though  the top 
of the Heavy group may be somewhere around the 
present maximum of about 380000 kg. The ICAO 
recommendations do n o t  f i t  the weight relation- 
ship so well. In particular there a re  insuffi-  
c ient  groups and the separation between the 
Heavy and Light groups would seem to be too low, 

1 - Transports 
2. Fighters 
3. Jet  Trainers 
4-  Exec. 
5, Commuter 
6, L t ,  Prop. 

= MT0I.J ' 
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3.3 Vortex Strength Cri ter ia  

The data of Figure 24 also gives indications of 
a possible relationship between Vortex S t r e n g t h  
and Separation Distance, 
are  based on practical experience of vortex wake 
encounters reported a t  London (Heathrow) over 
many years. REF 24 indicates the general philo- 
cpphy, which i s  t o  reduce severe incidents t o  
about 15 in 100,000 landings, which is expected 
t o  be equivalent to  an accident r a t e  of about 1 
i n  107 landings. 

I t  i s  possible to  work back from the relation- 
ship between separation distance and the weight 
factor  t o  find the approximate value o f  Vortex 
Strength (i*e,,, r a t io  o f  induced rol l ing moment 
to  ro l l  control power) tha t  the relationship 
implies. This i s  found to  be about 0.7 f o r  the 
CAA (or  about 1.0 for  ICAO) recommendations. 
The CAA c r i t e r i a  for  a severe event i s  more than 
30” of bank; thus, the equivalent fo r  ICAO would 
be more t h a n  45” o f  bank. 

The CAA recommendations 

40 

3.4 Discussion 

The practical experience tha t  led to  the CAA 
recommendations for  separation distances r e l a t e  
well t o  the theoretical  estimates and show tha t  
the RAE estimation methods form a rational basis 
for  assessing suscepti bi  1 i ty  to  vortex induced 
ro l l .  In general , i t  seems appropriate t o  cate- 
gorize a i r c ra f t  by MTOW as a t  present, and then 
use more detailed calculations to  identify the 
few exceptions to  the general groupings. An 
obvious example is Concorde, whose low aspect 
r a t io  would place i t  i n  a lower category than 
i t s  weight would suggest. T h i s  i s  supported 
by the resul ts  of ea r l i e r  t e s t s  by the RAE (REF 
3 ) ,  which showed tha t  the Coticorde wake d i d  i n -  
deed decay much more raFidly than other trans- 
p o r t  a i rc raf t .  

Another conclusion from the theoretical  equations 
i s  tha t  mili tary f igh ter  and j e t  t ra iner  a i r -  
c r a f t  are  no less  susceptible t o  vortex wakes 
than transport a i r c ra f t  of the same weight. This 
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has surprised most mil i tary p i lo t s  who f e l t  tha t  
their  extra manoeuverahility in ro l l  would give 
them more protection. However, although the 
maximum rol l  ra tes  on the approach are  about 
twice as high as  transport  a i r c ra f t ,  the span 
of the mili tary a i r c ra f t  i s  about half. 
the c r i t i ca l  term ( b  pMAX) i s  about the same. 

Thus ,  

4.0 BUILDING WAKES 
Building wakes are  related to  both wind shear 
and vortex wakes. The increasing pressure to  
build on airport  land t o  provide maintenance 
f a c i l i t i e s  for  large a i r c ra f t  and new terminals 
has produced s i tuat ions such as the large a i r -  
l ine  engineering base alongside the f ina l  kilo- 
metre of the approach to  runway 28R a t  London 
(Heathrow) Pi lots  landing on th i s  runway 
are  warned 'Turbulence l ikely below 300 
f t  near threshold 28R i n  strong S/SW winds ' .  
This applies generally i n  winds of more than 
15 k t .  

The RAE are asked to  advise the CAA on the 
acceptabi 1 i ty of proposed new 1 arge buildings 
a t  many UK airports ,  b u t  have been unable t o  
give any positive guidance so fa r .  There are  
basically two problems : 

a. a need for  theoretical or  model t e s t  
methods t o  assess the character of the 
building turbulence, and 

b. re la t ing turbulence character is t ics  t o  
a i r c ra f t  disturbances. 

The second area i s  being addressed by the work 
to  establish hazard levels for  wind  shear. 

The f i r s t  i s  the subject of j o i n t  research ac t i -  
v i t i e s  by Bristol University Aeronautical Engi- 
neering Department and the RAE. The f i r s t  stage 
of the work showed tha t  building wake turbulence 
i n  simulated natural turbulence can best  be 
described as discrete  eddies shed i n  a random 
fashion. The s ize  and probability of encoun- 
tering eddies being a function of the building, 
wind strength and natural turbulence. As the 
wind velocit ies a re  varying i n  space in a form 
that  i s  related to  the building geometry, i t  
means that  the frequently used Taylor's hypo- 
thesis cannot be applied. This hypothesis says 
that  the dis t r ibut ion of veloci t ies  i s  the same 
i f  the observer i s  stationary and the wind 
brings the turbulence past h im o r  i f  the observer 
moves th rough  the turbulence ( in  an a i rc raf t ) .  

I t  was, therefore, decided tha t  meaningful t e s t s  
could only be made by traversing the wake of the 
building along a typical a i r c ra f t  path and a t  
the same order of speed. A se r ies  of such 
traverses would then allow the d i s t r i b u t i o n  of 
turbulence and the probability of encountering 
large distrubances to  be determined. The main 
experiment i s  on a model of the Heathrow s i t e  i n  
the Bristol University Bui ld ing  Research Wind 
Tunnel. 
limited s e t  of data obtained from f l igh t s  by 
the RAE HS125 a t  Heathrow. The Heathrow condi- 

This i s  being compared w i t h  a more 

t ions will also be used as a guide to  levels of 
acceptabili ty,  as i t  would be undesirable to  
create any turbulence worse than the level a t  
Heathrow e 

The data from these experiments will  be available 
i n  1983 and i t  should then be possible to  es- 
tablish test methods and c r i t e r i a  fo r  assessing 
proposals for  large b u i l d i n g s  a t ,  o r  near, 
a i rports ,  

5.0 CONCLUDING REMARKS 
T h i s  review of research i n  the U K  on two of the 
more s ignif icant  invis ible  enemies of a i r c ra f t ,  
particularly during landing or take-off, has 
described the main features of the wind shear 
programme; the results from a recent vortex 
wake study, and the s ta tus  of a study of a i rport  
bu i 1 d ing  wakes. 

The wind shear programme is  aimed a t  providing 
relevant advice on a i r c ra f t  cer t i f ica t ion  i m -  
pl ications,  and developing sui table  systems to  
provide information to  p i lo t s  t o  make it  possible 
for  them to  penetrate wind shear w i t h  safety. 
The three main elements of the programme are: 

a. 

b. 

C. 

Worldwide measurements of wind shear from 
regular a i r l i ne  f l i gh t s  and special t r i a l s  
with the RAE HS-125 research a i rc raf t ;  

Assessment of potential hazard to  a i r c ra f t  
from wind shear; 

Development of systems to  give the o i lo t  
information on wind shear. 

These are expected to  reach a point dur ing  1983 
when fundamental research will  be suff ic ient ly  
complete to  provide the basis for  cer t i f ica t ion  
and design of automatic control systems, such as 
autopilot ,  autothrot t le ,  and autoland, and also 
for  the development and production of wind shear 
detection and display systems. A t  th i s  point, 
most of the RAE research e f fo r t  will  be trans- 
ferred to  other basic research tasks. The 
Establishment will continue t o  provide i t s  
usual consultancy service t o  the CAA and U K  
I ndus t ry  

The study of vortex wakes following the acci- 
dents to  a mil i tary f ighter  and a j e t  t ra iner  
a i r c ra f t  has led t o  the development by the RAE 
of a rational method for  assessing the potential 
hazard for  a given encounter, and also fo r  cate- 
gorizing a i r c ra f t  into convenient groups, 
fur ther  work i s  planned, although the recent 
study was unexpected. The  study does highlight 
the benefits of f lexible  research f a c i l i t i e s  such 
as the HS125, which can respond rapidly t o  such 
unexpected needs. 

The building wake programme i s  also reaching a 
point where i t  may be possible to  establish 
c r i t e r i a  fo r  acceptabili ty,  and corresponding 
t e s t  procedures for  assessing new building 
proposals. 
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